

〈論文〉

塗膜乾燥の理論と計算（第6報） —高湿度熱風の影響—

Theory and Practice of Coating Drying (6th Report)
- Effect of Highly Humid Hot Air -

伊與田浩志、樋口 芽以、増田 勇人、今駒 博信

要旨

塗膜の熱風乾燥の操作変数としてこれまで使用してきた熱風の温度と速度に、新たに湿度を第3の操作変数として加えることの重要性を、シミュレーション予測を通して定量的に示した。

まず周知の Fick 型ポリマー溶液塗膜に対する乾燥モデル式に基づいて、次に筆者らが先に提案した希薄スラリー塗膜に対する乾燥モデル式に基づいて、それぞれ乾燥シミュレーション予測を実施し熱風の温度と湿度の影響を調べた。このとき既往の粒子同伴限界含水率に代えて新たに粒子同伴限界粘度を導入した。

その結果、熱風湿度が高いほど定率乾燥期間における塗膜温度が高く、それに起因するいくつかの重要な知見が得られた。

これらの結果から、熱風の温度とともに湿度を乾燥時の操作パラメータとして、スラリー塗膜乾燥時の粒子移動に対する操作性が飛躍的に高まることが期待されることを示した。

キーワード：塗膜乾燥、高湿度熱風、粒子移動、スラリー塗膜、シミュレーション予測

Abstract

The importance of adding humidity as a third operating parameter to the previously used parameters of hot air temperature and velocity in the hot air drying of coatings was quantitatively demonstrated through simulation predictions.

First, based on the well-known Fick-type drying model equation for polymer solution coatings, and then based on the drying model equation for dilute slurry coatings previously proposed by the authors, drying simulation predictions were performed to investigate the effects of hot air temperature and humidity. At this time, we introduced a new critical viscosity instead of the

2025年8月25日受付、2025年11月21日審査終了
IYOTA Hiroyuki, HIGUCHI Mei, MASUDA Hayato,
IMAKOMA Hironobu
大阪公立大学大学院工学研究科機械系専攻